
A Survey on Continual Reinforcement Learning

Jinyuan Sun∗

Beijing University of Posts and Telecommunications
Beijing, China

jinyuan@bupt.edu.cn

Abstract

Humans possess a remarkable capacity for continuous learning and adaptation
throughout their lifetimes. This ability is often referred to as "never-ending learn-
ing," also known as continual learning or lifelong learning. Never-ending learning
entails the ongoing development of increasingly complex behaviors and the ac-
quisition of intricate skills to complement those already acquired. It involves the
capacity to reapply, adapt, and generalize these abilities to novel situations. In this
survey, I delve into the fundamental concept of Continual Reinforcement Learning
(CRL) and offer a concise introduction to the world model and the mechanisms
employed to bolster an agent’s lifelong learning journey.

1 Motivation and Introduction

We aspire to develop a machine that emulates the brain’s capacity for perpetual learning, enabling
it to consistently acquire new skills without erasing previously learned ones[7]. In the realm of
Reinforcement Learning (RL), we employ an agent to engage with unfamiliar environments using a
sequence of inputs and actions. While our inspiration draws from human learning, we realize that
survival alone may not be the most efficient objective, as it can demand immense computational
resources and lack a holistic understanding of the world.

Conventional RL approaches tend to focus on specific tasks, often reduced to the pursuit of predefined
goals using a fixed reward function. Regrettably, these methods have a tendency to overlook a wealth
of information about the real world, as agents tend to disregard what they perceive as irrelevant
to their immediate objectives. This approach risks the loss of valuable insights and the ability to
comprehend the world in its entirety. So

2 Related Work

2.1 Reinforcement Learning

Reinforcement learning (RL) investigates the interaction between intelligent agents and their envi-
ronment. It revolves around the continuous acquisition of an optimal policy, guiding a sequential
decision-making process, ultimately leading to the attainment of maximum rewards[18, 8]. The
process of reinforcement learning can be described through a Markov Decision Process (MDP),
employing a quadruple (A,S, P,R) to represent its essential components.

Here, the action space A signifies the set of actions exerted by the agent upon the environment, the
state space S denotes the collection of environmental states, and P signifies the transition probability
function. The reward, denoted as R, signifies the feedback provided by the environment in response
to actions taken by the agent. The policy, denoted as π, is a mapping from the state space to the action
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Figure 1: the interaction between agent and environment

space. As depicted in 1, the intelligent agent interacts with the environment, where At, St, and Rt

represent the action, state, and reward at time t, respectively.

Typically, the configuration of states and rewards is closely tied to the specific problem at hand.
The fundamental objective of reinforcement learning is to maximize the accumulation of long-term
rewards. The cumulative reward is defined as a specific function of the reward sequence. Since the
sum of future rewards is often infinite, a common approach is to introduce a discount factor, γ, within
the range γ ∈ [0, 1]. This factor balances the importance of immediate rewards with future rewards.
The cumulative reward from time t onward is expressed as:

Gt = Rt+1 + γRt+2 + · · · =
+∞∑
τ=0

γτRt+τ+1 (1)

Based on whether the environment is explicitly modeled, reinforcement learning methods can be
categorized into model-based reinforcement learning methods and model-free reinforcement learning
methods.

Model-based reinforcement learning methods operate under the assumption that the Markov Decision
Process (MDP) quadruple corresponding to the task is known in advance, meaning the machine has
already modeled the environment. Subsequently, these methods utilize the model to plan actions or
select strategies. It’s worth noting that these methods are highly sensitive to the quality of the model.

Model-free reinforcement learning methods, on the other hand, do not necessitate the explicit
modeling of the environment. Instead, they learn a value function or a policy function through
interaction with the environment. Depending on how the agent’s strategy is computed, these methods
can be classified into three categories: value-based, policy-based, and Actor-Critic methods. Table 1
provides a concise comparison of classic model-free reinforcement learning algorithms.

Table 1: Comparison of Classic Mode-Free Reinforcement Learning Methods

Category Value-based Policy-based Actor-Critic

Mechanism Guiding the policy through
the learning of values Directly learning the policy

Simultaneously learning
both the value function

and the policy

RL Algorithms

Q-learning[18],
Deep Q-Network(DQN)[13],

Double DQN[19],
Prioritized Relay DQN[15],

Dueling DQN[22]

Policy Gradient/REINFORCE[23],
TRPO[16], PPO[17]

Actor-Critic[10, 18],
A3C[12], DDPG[11]

Advantages

High sample efficiency,
low variance in value function

estimation, and resistance to falling
into local optima

Applicable to tasks in the current stage
where actions have a profound impact

on future decisions, such as in
games like Go or chess

Low variance in value
function estimation, high

sample efficiency, and fast
overall training speed of

the algorithm

Drawbacks

Applicable to tasks with
discrete action sets,

where the optimal policy is
typically deterministic

Requires a substantial amount
of sample training,

exhibits poor convergence,
and is susceptible to

converging to local optima
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2.2 Continual Learning

Although machine learning and deep learning have achieved remarkable results in many individual
tasks, these models are designed for specific tasks and lack the ability to dynamically adapt to
changing environments. They require a pre-prepared dataset that is shuffled randomly to approximate
an independent and identically distributed (IID) data distribution before training the model within
a finite timeframe. This learning approach in machine learning and deep learning falls under the
category of "batch learning mode."

Conversely, human learning is a gradual process, and individuals continue to acquire new information
and learn throughout their lifetimes. The acquisition of new knowledge often benefits from existing
experiences while also supplementing existing knowledge. This mode of learning in the human brain
falls under "continual learning mode." However, in the real world, it is impossible to obtain all the
data for a given task at once, and we cannot predict the nature of future tasks and data. Therefore,
conventional methods cannot transform training data into an independent and identically distributed
(IID) form over the timeline. In other words, the data for each task over time is non-independent and
non-identically distributed (Non-IID).

3 Modeling

We represent the agent’s variables as ’z’ and the inputs from the environment as ’x.’ We assume that
the agent is organized in a certain way to form a parameterized agent[1]. In this setup, the agent and
the environment adhere to a joint distribution: pϕ(x, z). The agent’s parameters are optimized to
match a desired target distribution, minimizing the KL divergence between beliefs and the actual:

minKL [pϕ(x, z) || τ(x, z)] (2)

where p refers to the actual distribution and τ refers to the target distribution.

3.1 Targets

Factorized targets represent a type of target where the inputs x and the agent variables z are
treated as independent. In such scenarios, the agent’s preference is to extract as little information
as necessary from the environment. This leads to the agent focusing on specific tasks and solving
narrow questions but may hinder its ability to continue learning.

expressive targets are a different type of target in which the inputs x and the agent variables z are
highly correlated. Agents are inclined to extract more information from the environment and seek to
find intersections between these variables. This approach enables agents to engage in unsupervised
learning, rare learning, exploration, and control.

In world modeling RL algorithms, expressive targets are typically employed to maximize mutual
information.

3.2 Information

Continual Reinforcement Learning (CRL) poses unique challenges for analysis because environments
can change rapidly, and the reward function may remain unclear and changeable. To address this
issue, Empowerment[9, 14] has been introduced as a metric to evaluate the difficulty of current tasks
at each stage of the learning process in an algorithm-agnostic way. The Policy Information Capacity
(PIC)[4] is a metric used to measure the mutual information between the episodic return R and the
policy parameter Θ. It is denoted as:

I(R; Θ) = H(R)− Ep(θ) [H(R | Θ = θ)] (3)

where p(Θ) refers to the prior distribution of the policy parameter (including network architecture).
PIC is employed to gauge the controllability of rewards via parameter sampling, and it can be
interpreted as a form of reward empowerment.
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Figure 2: an example agent with a Dreaming[2] process.

4 Methods

4.1 Dreaming Based

To enable the application of planning in unknown environments, it’s essential for the agent to acquire
knowledge about the dynamics of the environment through interactions. Deep Planning Network
(PlaNet)[6] represents a model-based agent that accomplishes this by learning environment dynamics
from images and making action decisions via rapid online planning within a latent space. To achieve
superior performance, a latent dynamics model with encoders and decoders is used to accurately
forecast future rewards for multiple time steps.

Planning from each individual step can still be a resource-intensive process. To address this chal-
lenge, a mechanism known as "dreaming" has been introduced in Figure 2. It allows the agent to
acquire knowledge about long-term behaviors by backpropagating values through imagined latent
trajectories[5].

4.2 Diversity Based

By observing that intelligent creatures can explore their environments and learn useful skills without
supervision, a method of creating open-ended algorithms, which generate their own never-ending
stream of novel and appropriately challenging learning opportunities is proposed[21]. DIAYN
(’Diversity is All You Need’)[3] learning useful skills without a reward function and by maximizing
an information-theoretic objective using a maximum entropy policy. The model is able to learn a
skill that solves the benchmark task despite never receiving the true task reward and can provide a
good parameter initialization for downstream tasks.

5 limitations and Challanges

The exploration of social learning within the framework of RL has been somewhat constrained.
To improve the model’s behavior and align it more closely with human-like actions, it becomes
imperative for the model to predict what others think.[20] This is because human learners continually
attempt to deduce the contents of other individuals’ minds. Incorporating this capability can equip
artificial agents with greater potency and flexibility as learners.

Agents Even young children possess intricate mental representations of others’ minds, structured
causally in a manner that enables them to acquire knowledge from others. In the process of designing
these agents, the challenge lies in striking the right balance between inductive bias and learning.
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Merely focusing on information gain is insufficient; it necessitates the formulation of a novel type of
"reward" that can incentivize and guide their behaviors effectively.

Environments Human learning goes beyond mere actions, labels, or straightforward reward-
predictive cues. The environments currently available for machines to learn from are overly simplistic
to foster the development of genuine general intelligence. Consequently, in future endeavors, the
challenge that remains is how to design and benchmark artificial agent environments that encompass
a broader spectrum of data, including emotional and tonal information. These environments need
to be richer, more interactive, and dynamically adaptive to facilitate more sophisticated machine
learning.
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