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Goals of Never-Ending RL

- long time goal: to develop a machine to be able to learn and adapt
to new scenarios over the duration of their lifetime.

- To long-term knowledge l I - To Remember

- To adapt from previous skills - To Learn
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Constrains of Traditional RL

- computational expensive

- hard to train (convergence)

- hard to design a reward function
- hard to simulate the entire world

- unable to explore the world (touch, feel, smell, see)
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Modeling TaHeng

Stochastic Action Agent
Stochastic Representation Agent
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Modeling

Stochastic Memory Agent
Stochastic Skill Agent
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Modeling TaHeng

Agent Modeling

Modeling:
Implement agent as trying to follow a desired
Past skills (current parameters ¢) target distribution
l all input all agent
variables \ r variables
{é‘?} P¢ (:C, < )
1 current
Input (x) m—) mmm)  Action i s A
Agent variables (2) Objectives.
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Modeling rHeng
Correlation is all agents need!

FACTORIZED TARGETS EXPRESSIVE TARGETS

- Input and agent variables are - Input and agent variables are
Independent under the target correlated under the target

- Agent try to learn and explore the
world as a whole.

- Actions are task-dependent

Task specific & Narrow Adaptive & General
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Modeling TaHeng

Maximize mutual information

Objectives of agents with expressive targets

I[z;:z:] — I[z;:z:<] + 1[2;-’1?> | :1:<]

past infomax future infomax

- Self supervised representation learning
- Self supervised exploration
- Self supervised controllability
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Modeling TaHeng
Policy Information Capacity(PIC)

I(R;0) = H(R) — Epp) [H(R|© = 0)]

e p(6): prior distribution of the policy parameter (including network architecture)
e Measure how controllable rewards are through parameter sampling

e PIC can be interpreted as Reward Empowerment.

Policy-optimal information capacity (POIC)
1(0;0) = H(O) — Ep) [H(O|© = 0)]

o p(O=1|7) =exp((r —Tmax)/n)

e Optimality variable, O € {0, 1}, represents the optimality of trajectory [Levine 2018).

e POIC can be interpreted as Optimality Empowerment.

Furuta, H., Matsushima, T., Kozuno, T., Matsuo;¥--Levine, S., Nachum, O., & Gu, S. S. (2021, July). Policy information capacity: Information-t
complexity in deep reinforcement learning. In International Co on Machine Learning (pp. 3541-3552). PMLR.
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- Dreaming Based él) * Diversity Based




Doncieux, S., Bredeche, N., Goff, L. L., Girard,
robotics. arXiv preprint arXiv:2005.06223.

Dreaming Process

Two Parts:;

Interact and learning from
the real data

Reflecting and predicting
without the input data

Implementations/ChrabHenc

Required data

Knowledge acquisition () /O
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Direct

_< [~ Indirect

Generated data

inx, A., Sigaud, O
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Process types

"Awake process": the robot interacts
with the real world

"Dreaming process": the robot has no
interaction with the real world

& Duro, R. (2020). DREAM architecture: a developmental approach

Actions

en-ended learning in
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PlaNet: Learning World Model
from Pixels

* Predict forward using compact latent states
* Using a combination of stochastic and deterministic process to robustly predict multiple futures

hy > ho > h3
> h3 @
(a) Deterministic model (RNN) (b) Stochastic model (SSM) (c) Recurrent state-space model (RSSM)

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha,

Conference on Machine Learning</i>, in <|>Proceed|ngs of Machin

amp; Dawdson J.. (2019). Learning Latent Dynamics for Planning from Pixels. <i>Proceedin e 36th International J
Research</i> 97:2555-2565 Available from https://proceedings.mirpress/v97/hafner19a.html.
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D reamer V2 Improvements:

* Vectors of categorical
* KL balancing

Achieves human-level performance on the Atari benchmark.
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32 classes each

orouzi, M., & Ba, J. (2020). Mastering atari with discrete world models. arXiv preprint arXiv:2010.02193.
ms, 35, 26091-26104.

Hafner, D., Lilli
Hafner, D., Lee, K. H., Fischer, I., & Abbeel, P. (2022). Deep hi

ical planning from pixels. Advances in Neural Information Processin
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Training with diverse agents

Continuous Coordination As a Realistic Scenario for Lifelong Learning

f
Pre-training Continual Training
Learner SEEns e
o ero/Few-sho Zero/Few-shot Zero/Few-shot
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Nekoei, H., Badrinaaraayanan, A., Courville, national Conference

- ar, S. (2021, July). Continuous coordination as a realistic scenario for lifelong learning. |
on Machine Learning (pp. 8016-8024). PMLR.



Diversity is all you need

Learning skills without a reward function: DIAYN Algorithm

Sample one skill per
episode from fixed
skill distribution.

Implementations THeng

ENVIRONMENT

z ~ p(z)

St+1 ~ P(St+1 | st, at)

ySi+1

----- e 1
Discriminator estimates skill

I
from state. Update discriminator DISCRIMINATOR
to maximize discriminability. | C](P(Z | St—l—l

Eysenbach, B., Gupta, A, Ibarz, J., & Levine,

(I()<Z ’ 9t>
Update skill to maximize
dlscnmmablllty

_ Algorithm 1: DIAYN

while not converged do
Sample skill z ~ p(z) and initial state so ~ po(s)
for t < 1 to steps_per_episode do

Sample action a; ~ mg(a: | st, z) from skill.
Step environment: S¢4+1 ~ p(St+1 | St, at).
Compute g4 (2 | s¢t+1) with discriminator.

Set skill reward 7: = log qs (2 | st+1) — log p(2)
Update policy (f) to maximize r; with SAC.
Update discriminator (¢) with SGD.

iversity is all you need: Learning skills without a reward function. arXiv pr:

* the discriminator is updated to better predict the skill,
* the skill is updated to visit diverse states that make it more discriminable

intarXiv:1802.06070.
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Rapid Exploration (RECON)

Distance
Action

Goal

- a learned latent variable model of distances and actions, along with a non-
parametric topological memory of images

Shah, D., Eysenbach, B., Rhinehart, N., S. (2021). Rapid exploration for open-world navigation with latent goal models. arXiv prepri iv:2104.05859. h / °J



Challenges & Limitations

- Representations: how to represent the world (formatting environments)
- Memories: how to preserve an already learned skill

- Explorations: how to automatically learn new skills (adaptive & general
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